
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Parana: A Parallel Neural Architecture
Considering Thermal Problem of 3D Stacked

Memory
Shouyi Yin�, Shibin Tang�, Xinhan Lin�, Peng Ouyang�, Fengbin Tu�, Leibo Liu�, Jishen Zhao†, Cong

Xu‡, Shuangcheng Li§, Yuan Xie§, Shaojun Wei�
� Institute of Microelectronics, Tsinghua University, Beijing 100084, China

† University of California, Santa Cruz
‡ HP Labs

§ University of California, Santa Barbara

Abstract—The recent advances in deep learning (DL) have stimulated increasing interests in neural networks (NN). From the
perspective of operation type and network architecture, deep neural networks can be categorized into full convolution-based neural
network (ConvNet), recurrent neural network (RNN) and fully-connected neural network (FCNet). Such different types of neural networks
are usually cascaded and combined as a hybrid neural network (Hybrid-NN) to complete real-life cognitive tasks. Such hybrid-NN
implementation is memory-intensive with large number of memory accesses, hence the performance of hybrid-NN is often limited by the
insufficient memory bandwidth. A ”3D + 2.5D” integration system, which integrates a high-bandwidth 3D stacked DRAM side-by-side with
a highly-parallel neural processing unit (NPU) on a silicon interposer, overcomes the bandwidth bottleneck in hybrid-NN acceleration.
However, intensive concurrent 3D DRAM accesses produced by the NPU lead to a serious thermal problem in 3D DRAM.
In this paper, we propose a neural processor called Parana for hybrid-NN acceleration in consideration of thermal problem of 3D DRAM.
Parana solves the thermal problem of 3D memory by optimizing both the total number of memory accesses and memory accessing
behaviors. For memory accessing behaviors, Parana balances the memory bandwidth by spatial division mapping hybrid-NN onto
computing resources, which efficiently avoids that masses of memory accesses are issued in a short time period. To reduce the total
number of memory accesses, we design a new NPU architecture and propose a memory-oriented tiling and scheduling mechanism to
exploit the maximum utilization of on-chip buffer. Experimental results show that Parana reduces the peak temperature by up to 54:72 �C
and the steady temperature by up to 32:27�C over state-of-the-art accelerators with 3D memory without performance degradation.

Index Terms—Neural processor, Hybrid neural networks, Thermal problem, 3D Memory

F

1 INTRODUCTION

A FTER almost two decades of stagnation, Artificial Intelligence
(AI) now is embracing another peak in its history. The

fast-developing deep learning (DL) techniques and their wide
deployment serves as the main driving horse of this new technology
wave [1–4]. Evolved from conventional neural network (NN) and
machine learning (ML) algorithms, DL involves many layers
with complex structures and/or multiple nonlinear transformations
to model a high-level abstraction of data. The ability to learn
tasks from examples makes DL particularly powerful in handling
so-called cognitive applications such as image understanding,
object detection, voice recognition, scene labeling, and video
surveillance[1–9], etc.

From the perspective of operation type and network architecture,
deep neural networks can be categorized into full convolution-based
neural network (ConvNet), recurrent neural network (RNN) and
fully-connected neural network (FCNet). ConvNet is composed of
convolutional layers and pooling layers, which is good at visual
feature extraction. FCNet is composed of multiple fully connected
layers, which is good at classification. RNN is composed of fully
connected layers with feedback paths, which is good at sequential
data processing. In a practical DL application, several neural
networks are usually cascaded as a hybrid neural network (Hybrid-
NN). For example, AlexNet [1] and VGGNet-16 [10] which are

proposed for image classification are actually the cascade of a
ConvNet and FCNet. LRCN [3] is another representative hybrid-
NN for visual recognition and description. Fig. 1 summaries the
network structures of AlexNet and LRCN. PathNet[2], proposed
by Google-DeepMind, demonstrates the general-purpose artificial
intelligence with hybrid-NN. Google-DeepMind also proposed a
unified hybrid-NN to implement various intelligent tasks [11].

Hybrid-NNs are usually memory-intensive high-throughput
algorithms with large amounts of parallel computation and memory
accesses. The acceleration of hybrid-NN requires a large on-chip

Image Understanding (LRCN)

5-Layer ConvNet 3-Layer FCNet 2-Layer RNN

Image Classification (AlexNet)

5-Layer ConvNet 3-Layer FCNet

Label:
Elephant

Sentence:
An elephant
standing in an
enclosure with
trees

Figure 1. Examples of hybrid neural networks (Hybrid-NN): AlexNet [1]
for image classification and LRCN [3] for image understanding.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

memory and a high memory bandwidth. 3D stacked memory
[12] provides the large capacity and the high bandwidth for
the high-throughput computation. 3D stacking neural processors
Neurocube [13] and TETRIS [14] integrate a 3D DRAM on top
of the neural processor unit (NPU). However, the vertical 3D
stacking integration easily suffers from customization of through-
silicon vias in 3D DRAM based on the layout of the NPU [15].
Compared to the vertical 3D stacking, a ”3D + 2.5D” integration
system integrates a high-bandwidth 3D stacked DRAM side-by-
side with a highly-parallel NPU on a silicon interposer. It avoids
the customization of 3D DRAM. Benefited from the advantages
of ”3D + 2.5D” integration, high-bandwidth modern CPU/GPU
are implemented with 2.5D integration, such as AMD’s Fiji [16],
NVIDIA’s Pascal [17] and Intel’s Knights Landing [18]. Such
”3D + 2.5D” integration is also explored for neural acceleration,
demonstrated by the Nervana Engine[19]. The ”3D + 2.5D”
integration system provides a promising solution to accelerate
the high-throughput neural network. However, this 3D memory
architecture may come out a serious thermal problem for integration
with NPUs [15]. A higher temperature increases the cooling cost
[15] and reduces the life-time of 3D memory [20]. For example,
Google’s TPU3 used 3D memory to help address the memory
bandwidth problem, but has to use liquid-cooling to address the
thermal challenge [21]. A straightforward approach to lower the
average temperature of 3D memory is to reduce the number of
memory accesses over a certain period of time so that the dynamic
energy of accessing memory is decreased. However, the peak
temperature is also affected by the transient memory bandwidth.
Fig. 2 shows different peak temperature over time caused by two
different memory access behaviors. The total number of memory
accesses are the same in the two cases. With evenly distributed
memory access in different phases of the execution, the peak
temperature stays almost constant over time. In contrast, with the
uneven access behavior, the last 20% execution phase takes 80%
memory accesses, resulting in a much higher the peak temperature.
When the temperature exceeds the maximum operation temperature
(85 �C), the error rates of DRAM can go up dramatically.

40

50

60

70

80

90

100

110

120

0% 20% 40% 60% 80% 100%

P
ea

k
te

m
pe

ra
tu

re
 (

Figure 2. The temperature affected by memory access behaviors. The
data is calculated with CACTI-3DD [22] and HotSpot [23]

In this paper, we propose a ”3D + 2.5D” integration neural
processor called Parana for thermal-efficient hybrid-NN acceler-
ation. Parana integrates 3D memory and NPU with the ”3D +
2.5D” solution and tackles the thermal problem of 3D memory
by reducing the total number of memory accesses and reshaping
memory access behaviors. Specially, Parana balances the memory
bandwidth with the help of spatial division mapping by avoiding
bursty memory traffic. To reduce the total number of 3D memory
accesses, we design a novel NPU architecture and optimize the
tiling and scheduling policy to maximize the utilization of on-chip

buffer. The key contributions are summarized as following:

� For the first time, we consider the thermal problem of 3D
Memory in NN accelerator, and jointly optimize the total number
of memory accesses and the memory access pattern, to reduce
the steady temperature and peak temperature.

� For the first time, we design a spatial division mapping (SDM)
mechanism to utilize the complementarity between different
NNs, resulting in the smoothness of the memory access pattern.
We propose a divisible processing element (PE) array for
concurrently accelerating different NNs in parallel.

� We simultaneously use SDM, sparsity, unified buffer and
dataflow scheduling techniques to achieve joint optimization.
We propose an analysis framework to find the most profitable
tiling and scheduling solutions.

2 BACKGROUND AND RELATED WORK

This section presents the background on hybrid-NN, spatial
architecture, 3D-stacked memory, ”3D + 2.5D” integrated systems,
and the related work.

2.1 Background

Hybrid Neural Network (Hybrid-NN): Hybrid-NN typically
consists of ConvNet, FCNet, and RNN.

� ConvNet: The main operation of ConvNet is convolution. In
each convolutional layer, a 3D filter is used to extract features
from the input data. The output feature map is generated by
means of sliding the 3D filter on the input data. For instance, it
receives nc feature maps as input data and outputs mc feature
maps. The mc feature maps correspond to the filtered results of
mc 3D filters. Each 3D filter is operated on nc input feature maps
to generate one output feature map.

� FCNet: FCNet mainly performs matrix multiplications. The
input data include a vector and a weighting matrix while the
output data is a vector.

� RNN: Generally, Long-Short-Term-Memory (LSTM) networks
are the best performing RNNs [24]. In LSTM-based RNNs,
primary operations are full connection operations like FCNet
and element-wise vector multiplications that perform the gating
function. In this paper, we use RNN to represent LSTM-
based RNN.

PE PE PE PE

PE PE PE PE

PE PE PE PE

Input Buf
Output Buf

Weight Buf

PE PE PE PE

 S
P

M
 B

uf
 C

trl

Three buffers are Multi-
bank scratch-pad-memory

Memory
Access

Figure 3. Overview of the spatial architecture. The common spatial
architecture is composed of a PE array and three isolated buffers for
temporal input, output, and weight in a neural network.

Spatial Architecture: Many prior work [7, 8, 25–49] have used
spatial architectures to accelerate neural networks in ASIC and
FPGA implementations. Fig. 3 reviews the spatial architecture
in ShiDianNao [29], Eyeriss [8], and ENVISION [50]. The key
of the spatial architecture is the PE array which exploits high
compute parallelism by using direct communication between simple

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Side View Top View

3D DRAM

3D DRAM

3D DRAM

3D DRAM

M
em

ory Interface
M

m
or

nte
ce M

em
or

y
In

te
rf

ac
e 3D DRAM

3D DRAM

3D DRAM

3D DRAM

Controller

NPU

Weight Buf

Input Buf

Output Buf

Figure 4. ”3D + 2.5D” system architecture for neural network acceleration.

PEs. Input, output and weight buffers are designed as the scratch-
pad-memory (SPM) to save temporal data in the acceleration of
hybrid-NN on PE array. The NPU loads inputs and weights from
DRAM and stores them into input and output buffer. The PE array
reads them from these buffers, carries out the neural computation,
and writes outputs back to output buffers. The final outputs are
transmitted from output buffer to DRAM. To meet the high parallel
degree of PE array, each SPM buffer is composed of multiple
memory banks.
3D Memory and ”3D + 2.5D” Integration:

3D memory is a promising solution to meet the high capacity
and bandwidth demands in the acceleration of high-throughput
hybrid-NN. In the early days of neuromorphic, 3D wafer scale
integration(3D WSI) has been used in neural network processor
design, such as [51]. The work showed that 3D WSI technology
can provide a hardware medium for constructing massively
parallel computing processors like neural network accelerator. In
more recent applications, 3D integration is generally used with
memristors in neuromorphic system [52]. This work proposed
a 3D synaptic architecture based on Ta/TaOx/TiO 2/Ti RRAM
for analog neuromorphic computation. High-bandwidth Memory
(HBM) is a typical 3D stacked memory standard proposed by
JEDEC [53] for high-bandwidth applications. HBM is composed
of 4 DRAM dies and one single logic die, and provides maximum
256 GBps memory bandwidth and 4GB memory capacity. There
are two major integration solutions with 3D memory and NPU:
vertical 3D integration and ”3D + 2.5D” integration (depicted in
Fig. 4). Vertical 3D integration places the 3D memory directly
on top of the processing unit [13, 14, 54–56], while ”3D + 2.5D”
solution integrates wide-interface 3D memory side-by-side with
the processing unit on a silicon interposer. The latter one has been
proved to be a good solution for high-throughput computation
[16–18], and is explored for neural acceleration recently [19, 57].

2.2 Other Related Work
In addition to the related work described in previous subsection,
other related work on ConvNet accelerators, and FCNet/RNN
accelerators are briefly described in this subsession.
ConvNet Accelerators: In general, ConvNets are computationally
intensive, ConvNet acceleration has focused on improving the peak
performance and the energy efficiency. Some accelerators [7, 9, 25,
29–31, 39, 42, 43, 46] exploit the dataflow to activate more PEs to
improve the computing parallelism. Others [8, 26, 36, 58] exploit
the locality in dataflow to improve energy efficiency.
FCNet/RNN Accelerators: FCNet/RNN acceleration are usually
memory-bounded. Consequently, most of the prior work of
FCNet/ConvNet acceleration focus on quantization, sparsity, and
3D stacked design. Previous researches [7, 9, 28, 40, 59] have
retrained the neural network with a low-precision quantization.
Some accelerators [41, 60] accelerate sparse FCNet with several

PEs in SIMD. Because the sparsity of weight matrix is random,
some PEs are always wasted in acceleration. The accelerators
[13, 14, 19] improve performance of FCNet/RNN with high-
bandwidth 3D memory.

Eyeriss [8], EIE [41], Neurocube [13] and TETRIS [14] are the
most relevant accelerators. Eyeriss is designed with a optimized
dataflow on the PE array and optimizes the memory accesses with a
global buffer. EIE supports sparse fully connected networks with a
SIMD architecture. Different from Parana, EIE distributes non-zero
weights distributed in local storage of all PEs. The input neurons
are broadcasted and each PE calculates parts of sparse FC with
its local non-zero weights and the broadcasted inputs. Because the
number of non-zero weights in each PE are different, EIE suffers
from the load imbalance. Parana overcomes the load imbalance by
storing input/output neurons in each PE and averagely spreading
non-zero weights among all PEs. Neurocube integrates 3D memory
on the NPU vertically. TETRIS improves the performance of 3D
stacked NPU by trading off the size of on-chip buffer capacity and
the number of used PEs, and also proposes a bypassing scheduling
scheme to reduce memory accesses.

Parana is different from the existing accelerator designs. In
purpose, Parana jointly optimizes the total number of memory
accesses and the memory access pattern, instead of merely avoiding
masses of memory accesses, so that both the steady temperature
and the peak temperature can be optimized. In methodology, our
work not only adopts data reuse to reduce the number of memory
accesses, but also utilizes the complementarity between different
NNs to smooth the memory access pattern.

3 MOTIVATION

We motivate our design by discussing the inefficiencies in prior
NPU designs.

Thermal issue remains a critical concern towards feasible ”3D
+ 2.5D” integrated systems [15]. Higher temperature can lead to
substantially increased cooling and packaging costs in ”3D + 2.5D”
systems [61]. Furthermore, the increase of temperature can degrade
DRAM reliability and performance. For example, JEDEC stipulates
that systems running beyond 85 �C need to double memory self-
refresh rate [62]; the rate continues to double for every � 10 �C
degree beyond 85 �C [63]. Hence, to tackle the thermal problem of
3D memory, we need to consider both the total number of memory
accesses and the memory access behaviors.

The state-of-the-art NPU designs focus on improving the peak
performance and the energy efficiency. The design choices in state-
of-the-art NPUs are not optimized for the thermal problem in 3D
memory. We summarize three inefficiencies in NPU for the thermal
problem in ”3D + 2.5D” integration, as follows:

First, the time division mapping (TDM) scheme, which is
widely adopted by the state-of-the-art NPUs [9][7][29], can
generate substantial amount of heat by executing FCNet and RNN.
Hybrid-NN commonly employs a cascaded network architecture.
As such, ConvNet, FCNet and RNN are accelerated one-by-one
under TDM. While the memory footprint of ConvNet is relatively
small, FCNet and RNN are memory intensive. As a result, such
uneven memory access behavior across ConvNet, FCNet and RNN
can create hotspots in 3D memory of ”3D + 2.5D” integrated NPUs,
harmful to the peak temperature.

Second, most previous designs can lead to substantial underuti-
lization of on-chip storage resources. Most prior spatial architecture
designs employ isolated on-chip buffers to store input, output, and

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Unified SPM Buffer PE array

CONV
weight

FC
weight

Conv
Input

FC
Input

Conv
Output

FC
Output

...

Bank #0
Bank #1
Bank #2

Bank #T-3
Bank #T-2
Bank #T-1

3D DRAM Accesses

...

...

...

...

...

...

...

...

Reg Cache Buffers

N
P

U
 C

on
tr

ol
le

r
Sparse FC
sub-array

CONV
sub-array

Configurable PE Architecture

Partial Sum

LM3

LM2

LM5

LM4
+

Figure 5. Parana architecture overview.

0

0.5

1

1.5

2

2.5

1 2 3 4 5

M
em

or
y

fo
ot

pr
in

t (
M

B
)

(a) AlexNet

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13

weight

output

input

layer

(b) VGGNet-16

Figure 6. Input, output and weight sizes of various convolutional layers in
AlexNet[1] and VGGNet-16[10].

weight of a neural network, respectively [7, 9, 28, 29, 39, 40]. Yet,
the memory footprint varies across input, output and weight in
various layers of hybrid-NN. Fig. 6 summaries typical input, output
and weight sizes of convolutional layers in hybrid-NNs. Due to the
disparate sizes, the isolated buffer design cannot fully utilize all
on-chip storage resources to reduce 3D memory accesses.A recent
study Eyeriss [8] employs a global buffer design to improve the
utilization of on-chip storage resources. Eyeriss also incorporates
an analysis framework that optimizes system energy efficiency.
However, Eyeriss does not take into account the thermal issue
imposed by 3D + 2.5D integrated NPUs.

Third, the sparse fully connected layers are usually accelerated
by the SIMD PEs based NPUs [41][60]. So far for the 2-D PE
array based NPU, it has to store the dense representation in the
on-chip buffer by filling the pruning connections in FCNet and
RNN with zero. The dense representation occupies more on-chip
buffer,resulting in extra DRAM accesses, harmful to the steady
temperature of 3D memory.

4 PARANA

In ”3D + 2.5D” integration, the proposed neural processor solves
the thermal problem by reducing the total number of memory
accesses and controlling the memory access behaviors. This section
presents the Parana architecture and the optimization scheme
behind Parana, which reduces the temperature of 3D memory. We
also propose a analysis framework to fully exploit the advantage
of Parana architecture to reduce temperature. In ConvNet, each
pooling operation can be treated as a specific convolution by
swapping MAC in convolution with MAX comparison. In RNN,
The gate indicators are iteratively calculated by such kind of
operations: Gatet = d (Wx �Xt +Wh �Ht�1 +bias), where, in iteration
t, Gatet denotes the input gate, forget gate or output gate. Xt
and Wx are the corresponding input data and weighting matrix,
respectively. d () represents the nonlinear operation like sigmoid

and tanh. The matrix operation ”�” can be regarded as fully
connected operations. Therefore, we introduce the implementation
of ConvNet, FCNet, RNN on Parana only with convolution
computation (CONV) and fully connected computation (FC).

4.1 Architecture Overview

Parana reshapes the memory access behavior with spatial division
mapping (SDM), which is supported by a divisible and configurable
PE array. To reduce the total memory accesses, a tiling and
scheduling mechanism for unified SPM buffer is used to maximize
the data reuse. Fig. 5 depicts the overview of Parana architecture.
It consists of four major components: a divisible and configurable
PE array, a unified SPM buffer, multiple register cache buffers and
a dataflow controller.
The divisible PE Array: To enable SDM, the PE array is allowed
to be partitioned into two parts, in which one part is used to
accelerate CONV and the other part is used to accelerate sparse FC.
In the divisible PE array, the network on-chip (NoC) supports two
fixed dataflows: one for CONV and the other for sparse FC. Each
PE includes one PE controller (include configuration words), one
MAC unit for CONV and FC computation, one MAX comparison
for pooling operation and five blocks of local memory (LM1 �
LM5). To support flexible partitioning solutions in SDM, each PE
supports two working modes: CONV mode and sparse FC mode.
The logic resources and local memories in the PE are reused for
the two modes.
The Unified SPM Buffer: It is implemented with multiple SRAM
banks to meet the high parallelism of the PE array and occupies
an independent address space in the system address space. The
key of the unified SPM buffer is maximizing the data reuse in the
acceleration of hybrid-NN. The buffer provides inputs and weights
for the computation in the PE array and stores the outputs from
the PE array. Inputs, outputs, and weights are saved in different
address spaces of the buffer, which is calculated by the Parana
compiler in the compiling phase. For different hybrid-NN layers,
the boundaries of different address spaces are allowed to be shifted
to maximize the utilization of the SPM buffer capacity.
Register Cache Buffers: Different with the SPM buffer, the cache
buffers do not occupy any space in the system address space. The
temporal data in register cache buffers is the subset of the unified
SPM buffer. Each register cache buffer is implemented with register
files and organized as a FIFO. Although the unified SPM buffer is
implemented as multi-bank which provide multiple data accesses
in each cycle, it is hard to serve the requests for different types
of data simultaneously, i.e. inputs/outputs/weights. Register cache
buffers are used to bridge the dataflow between the unified SPM
buffer and the PE array. For each access to the unified SPM buffer,

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

one register cache buffer is filled up with the SPM buffer access
and the register cache buffer provides the data to the PE array
for each cycle. The unified SPM buffer services six register cache
buffers in time division multiplexing.
Parana Controller: Parana is a data-driven neural processor. The
controller is used to configure the PE array, manage the unified
SPM buffer and schedule the dataflow for efficient hybrid-NN
acceleration with a low temperature in 3D memory. The controller
first loads the configuration to configure the data path in PE array.
Then, the controller loads data from 3D DRAM, saves different
types of the data in independent spaces of the unified SPM buffer
and feeds the PE array with the data. When the data is worn out,
the acceleration is finished.

4.2 Configurable PE for both CONV and sparse FC
Computation
To provide different partitioning solutions in SDM, each PE in
Parana can be configured into either CONV mode or sparse FC
mode. Fig. 5 depicts the PE architecture, in which the working
mode of each PE is decided by the configuration word in the PE
and he computation of sparse FC or CONV is controlled by the PE
controller. The local memories and logic resources in each PE are
shared by both modes.

w1 w2
w3

w4
w5 w6

w7
w8

In Out× =
(a) Original dense representation of sparse FC

Column coordinate

Row coordinate
Non-zero weights

Input neurons LM1 (In)

LM3
LM2

LM5 (Out)

LM4

(b) Accelerated by one PE

Figure 7. An example of sparse FC acceleration on PE.

In sparse FC mode, each PE accelerates the sparse FC as
depicted in Fig. 7. Fig. 7(a) shows the orignal representation of
sparse FC. Fig. 7(b) presents the sparse FC acceleration on the
PE. In sparse FC acceleration, inputs and outputs are respectively
saved in LM1 and LM5 of the PE. LM2, LM3, and LM4 are
implemented by FIFO and used to buffer the non-zero weights and
the corresponding row/column indices of each non-zero weight.
The sparse FC computation on the PE is performed in four steps,
under the control of PE controller: (1) The PE reads non-zero
weight (weigth) and its column/row coordinates from LM3, LM2,
and LM4; (2) The PE uses the column coordinate to index the
input oprand (in[col]) in LM1 and uses row coordinate to index the
partial sum (out[row]) saved in LM5; (3)The PE executes multiply-
and-accumulating operation out[row] = in[col] �weight; (4) The
produced partial sum is written back into LM5.

Under convolutional mode, the computing process of convolu-
tion in Parana follows the systolic dataflow [8]. In each PE, LM1
saves one row of weight kernels and LM2/LM3/ LM4 saves one
row of input feature maps. The logic resources in the PE take the
inputs to calculate one row of partial convolutional sums and the

PE saves the partial sums in LM5 to implement accumulation with
future results. The CONV computation in each PE is performed in
three steps, under the control of PE controller: (1) The PE loads
one kernel weight (weigth) from LM2/LM3/LM4, one input (in)
from LM1 and one partial sum from LM5; (2) The PE executes
multiply-and-accumulating operation out = in �weight; (3) The
produced partial sum is written back into LM5.

Step 1 Step 3Step 2

× =
A row of weight kernel A row of input

feature map
A row of output

feature map

weights

Inputs

Output

LM1 (In-row)

Figure 8. An example of CONV acceleration on PE.

4.3 Divisible PE Array for Spatial Division Mapping
(SDM)
To enable array partitioning, Parana NOC is configurable and
divisible. To enable CONV and sparse FC acceleration on the PE
array simultaneously, it provides independent input/output ports
around each edge of PE array and avoids the datapath conflicts in
the computation of CONV and sparse FC.

Fig. 9 demonstrates the SDM partitioning and the dataflows of
hybrid-NN on the partitioned PE array. The demo shows an equal
partitioning for a CONV sub-array and a sparse FC sub-array. The
CONV sub-array accelerates ConvNet and the sparse FC sub-array
accelerates FCNet and RNN. Each sub-array works with three
independent register cache buffers (input, output and weight).

To accelerate the sparse fully connected layers on the sparse
FC sub-array depicted in Fig.9, all PEs in the column i duplicate
the input vector (in i) and output vector (out i). The non-zero
weights are uniformly divided into three vectors, which are equal
to the number of rows in the PE array. Each row of the PE array
computes with one subvector of non-zero weights. The sparse FC
acceleration in each PE is as the same depicted as Fig. 7(b). The
dataflow of sparse FC computation includes three stages: input
operand duplication, sparse FC computation, and the accumulation
of outputs. At the first stage, input operands are transmitted into
the PE array from the bottom PEs and saved into LM1 in each
PE. Input neurons are reused across PEs vertically. At the second
stage, non-zero weights are uniformly divided into three parts and
transmitted into the corresponding rows of the PE array one by one.
Each PE multiples the non-zero weight by the saved input operand
and accumulates the product with the partial sum saved in the PE.
At the third stage, partial sums for the same output at the same
column are accumulated and sent out from the PE array.

The convolution computation with the CONV sub-array follows
the systolic dataflow in [8]. The CONV sub-array loads weights
from the PEs at the top edge. The inputs are transmitted into the PE
array along vertical direction. It loads inputs from the PEs at the
left and top edges and transmits the inputs along diagonal direction.
The outputs are sent out from left to right and written back to the
register cache buffer.

To illustrate why SDM can reduce memory bandwidth in
the acceleration of hybrid-NN on NPU. We assume that NPU
adopts an optimal scratch-pad-memory buffer (OPT-Buffer) which

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Weight cache buffer
for Sparse FC

w7
4
1

w5
3
0

w3
1
2

w1
0
1

w8
4
4

w6
3
5

w4
2
3

w2
0
5

Dataflow
of CONV

Dataflow of
sparse FC

Input datapath
Weight datapath
Output datapath

Output cache buffer for Sparse FC

Output
cache
buffer

for
CONV

Input
cache
buffer

for
CONV

CONV
PE

CONV
PE

CONV
PE

CONV
PE

CONV
PE

CONV
PE

CONV
PE

CONV
PE

In_0
Out_0

In_1
Out_1

In_2
Out_2

In_3
Out_3

In_0
Out_0

In_1
Out_1

In_2
Out_2

In_3
Out_3

Weight cache buffer for CONV

Unified
SPM

buffer

Input cache buffer for Sparse FC

Figure 9. The dataflows of CONV and sparse FC in SDM

fully exploits the locality in neural networks and 3D memory
provides sufficient bandwidth for neural computation. Table 1 lists
all parameters used in this paper.

For the acceleration of (M�N) full-connection layer in FCNet
and RNN, M and N are respectively the numbers of output neurons
and input neurons. Assuming the number of PEs is PEFC, the
bandwidth demand of sparse FC is

BWFC =
M �N �SPA �DL

(M �N �SPA)=(PEFCNet=RNN � f)
= DL � f �PEFCNet=RNN (1)

in which f is the frequency of the NPU. For the acceleration of
(R;C;M;N;K) convolutional layer in ConvNet, (R;C) are the size
of output feature map, (M;N) are respectively the number of output
and input feature maps, and K is the kernel size. With PCONV PEs,
the inference time of CONV is

TCONV = (R �C �M �N �K2)=(PEConvNet � f) (2)

in which, (R �C �M �K2) is the MAC operations in the convolutional
layer. The bandwidth demands for input, output, and weight are
respectively

BWInput =
R �C �N �DL

T
=

DL � f
M �K2 �PEConvNet (3)

BWOut put =
R �C �M �DL

T
=

DL � f
N �K2 �PEConvNet (4)

BWWeight =
M �N �K2 �DL

T
=

DL � f
R �C

�PEConvNet (5)

Hence, the bandwidth demand of CONV is

BWCONV = BWInput + BWOut put + BWWeight (6)

= (
1

M �K2 +
1

N �K2 +
1

R �C
) �DL � f �PECONV (7)

� DL � f �PEConvNet (8)

From the equations (1) and (8), we find that the bandwidth demands
in CONV is smaller than sparse FC with the same row of PEs.
Hence SDM, which accelerate ConvNet and sparse FC in parallel,
is beneficial to reducing the maximum bandwidth demand in NPU
and the peak temperature in 3D memory.

Different partitioning solutions of the PE array and the SPM
buffer leads to different thermal and performance effects. Section
5.2 introduces the optimization framework which achieves the most
profitable spatial allocation for the lowest peak temperature without
performance degradation.

5 OPTIMIZATION FRAMEWORK

To accelerate a certain hybrid-NN on Parana, we propose a joint
spatial resource partitioning and tiling/scheduling mechanism to
minimize both peak temperature and steady temperature of 3D

Table 1
Notation Description

Hybrid-NN Parameters
B, DL Batch size and data length of hybrid-NN
(R;C;M;N), K,
LConvNet

Parameters of CONV: (R;C) are rows and columns
of feature maps, M is the number of output maps,
N is the number of input maps, K is the kernel
size, LConvNet is the number of layers in ConvNet

(I;O), SPA,
LFCNet=RNN

Parameters of FC: I is the number of input neurons,
O is the number of output neurons, SPA is the
degree of sparsity, LFCNet is the number of layers
in FCNet/RNN

Architecture Configuration
SPM Storage size of the unified SPM buffer.
PE the number of PEs in the PE array.

Partition
SPMConvNet , SPMFCNet=RNN The SPM buffer size of ConvNet and

FCNet/RNN in SDM
PEConvNet , PEFCNet=RNN The number of PEs for ConvNet and

FCNet/RNN in SDM
Tiling and Scheduling

(Tb;Tr;Tc;Tm;Tn) Tiling parameters for CONV
(Tb;Ti;To) Tiling parameters for FC
CONV � ir, FC� ir reuse inputs
CONV �wr, FC�wr reuse weights
CONV �or, FC�or reuse partial sums

memory. The spatial resource partitioning can reshape the 3D
memory access behavior and results in even distribution of memory
access over time, which can lower peak temperature. The tiling and
scheduling of hybrid-NN can improve the utilization of on-chip
buffer and reduce the number of 3D memory accesses, which can
lower steady temperature.

We first introduce the analysis model to achieve the most
profitable tiling/scheduling of hybrid-NN and resource partitioning
of PE array. Then we present the compiling workflow and execution
workflow with Parana.

5.1 Buffer Oriented Tiling and Scheduling to Minimize
3D Memory Accesses
Because the configuration of different layers is largely different
in hybrid-NN, we analyze the tiling and scheduling scheme for
CONV and sparse FC to maximize the utilization of the unified
SPM buffer and data reuses in hybrid-NN. In previous NPUs, tiling
is usually used to extract a sub-CONV or sub-FC which can be
mapped on the PE array to optimize the computation flow [9; 39].
For Parana, we propose a buffer-oriented tiling method. It tiles the
sub-CONV and sub-FC of hybrid-NN to match the size of SPM
buffer. For a CONV layer (R;C;M;N) and the kernel size is K, we
tile the CONV layer with parameters (Tr;Tc;Tm;Tn) to ensure that
the unified SPM buffer can save the all inputs/outputs/weights in
the tiled convolution. A high utilization of the unified SPM buffer
capacity can be achieved by optimizing the tiling parameters.

Scheduling is used to maximize the data reuse between the
tiled neural network layers. There are three classic reuse patterns
used by state-of-the-art NPUs [7; 26; 28; 29; 43], including input
reuse (ir), weight reuse (wr) and partial sum reuse for output (or).
Take the input reuse of CONV as an example, the inputs in one
tiled sub-CONV keep being on the chip until all tiled sub-CONVs
which need the inputs have been finished by the NPU. The input
reuse is suitable to the layer in which the memory footprint of
inputs is larger than outputs and weights. Because different layers
own different memory footprints of inputs, outputs, and weights,
one reuse pattern cannot suit to all layers in hybrid-NN. A dynamic

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

scheduling mechanism for different layers is beneficial to maximize
the data reuse in hybrid-NN.

To achieve the most profitable tiling and scheduling for each
CONV and fully connected layer, we setup the models for CONV
and FC to analyze the memory accesses. In the models, Parana
works in batch mode. For ConvNet, Parana accelerate a group of
inputs in each inference one by one. For FCNet and RNN, a batch
of inputs are processed together. The tiling and scheduling models
for one CONV and a batch of FCs are discussed as follows.
Tiling and scheduling models for one CONV: Convolutional
(CONV) tiling is used to select the most profitable parameters
(Tr;Tc;Tm;Tn), which allow the tiled convolution to be saved in
SPM buffer directly. With these tiling parameters, we calculate
SPM demands for CONV inputs, outputs, and weights, as follows:

SPMCONV�i = Tr �Tc �Tn (9)
SPMCONV�o = Tr �Tc �Tm (10)
SPMCONV�w = Tm �Tn �K �K (11)

Under the tiling mode, Parana completes the CONV computation
by loading different tiled convolutions Rpt times, and the Rpt is

Rpt = d R
Tr
e � d C

Tc
e � d M

Tm
e � d N

Tn
e (12)

In a simple scheduling without data reuses between tiled
convolutions, the total number of 3D memory accesses is the
product of SPM buffer size (SPM for output need to be calculated
two times for loading the partial sum and writing back the updated
partial sum) and Rpt. Efficient scheduling reduces the 3D memory
accesses by fixing one kind of data (e.g. tiled input, weight or
the partial sum of output) in SPM buffer and reuses the data for
different tiled CONV computation. Hence, the total number of
memory accesses under input reuse, partial sum reuse and weight
reuse scheduling are respectively

MACONV�ir = R �C �N +(2 �SPMCONV�o + SPMCONV�w) �Rpt (13)
MACONV�or = R �C �M +(SPMCONV�i + SPMCONV�w) �Rpt (14)
MACONV�wr = M �N �K �K +(SPMCONV�i + 2 �SPMCONV�o) �Rpt(15)

in which, the first term of each equation is the original data size
for input, output, and weight and other terms are calculated by
multiplying the SPM buffer size by Rpt.

The minimal number of 3D memory accesses for the CONV
layer is achieved by resolving the following optimization problem:

min MACONV = min(MACONV�ir;MACONV�or;MACONV�wr) (16)

s.t.
SPMCONV�i + SPMCONV�o + SPMCONV�w � SPMConvNet (17)

By enumerating all possible tiling under the three reuse patterns,
the Parana complier achieves the most profitable tiling and
scheduling configuration for the CONV layer with limited SPM
buffer size. The total amount of 3D memory access in ConvNet
can be calculated with the MACONV of all CONV layers.
Tiling and scheduling models for a batch of FCs: The tiling
and scheduling model in FC is similar to CONV. The SPM storage
demands of input, output, and weight for FC are respectively

SPMFC�i = Ti �Tb (18)
SPMFC�o = To �Tb (19)
SPMFC�w = Ti �To �SPA �3 (20)

in which SPA is the degree of sparsity in FC and the factor of 3 is
the storage cost for the representation of sparse FC. The repeating
times for tiled FCs computation is

Rpt = d B
Tb
e � d I

Ti
e � d O

To
e (21)

The total number of 3D memory accesses under input reuse, partial
sum of output reuse and weight reuse are respectively

MAFC�ir = I �B +(2 �SPMFC�o + SPMFC�w) �Rpt (22)
MAFC�or = O �B +(SPMFC�i + SPMFC�w) �Rpt (23)

MAFC�wr = I �O �SPA �3 +(SPMFC�i + 2 �SPMFC�o) �Rpt (24)

The optimization problem for the tiling and scheduling of FC is

min MAFC = min(MAFC�ir;MAFC�or;MAFC�wr) (25)

s.t.

SPMFC�i + SPMFC�o + SPMFC�w � SPMFCNet=RNN (26)

With MAFC of all full-connection layers, the complier can calculate
the number of 3D memory accesses for FCNet and RNN with
assigned SPM storage.

5.2 Spatial Resource Partitioning to Minimize Peak
Bandwidth
By partitioning the PE array and SPM buffer, multiple NNs can
be accelerated on Parana in parallel. Then the neutralization of
peak bandwidth of different NNs results more smooth memory
access behavior. To find the best resource partitioning, we formulate
an bi-objective optimization problem. Because FCNet and RNN
are mainly compose of FC layers, in the operation problem we
calculate the inference time of FCNet and RNN by summing up
the inference time of all FC layers.

For the CONV layer (R;C;M;N;K), the memory access under
the most profitable tiling scheduling is MACONV , which has been
discussed in Section 5:1. Assuming PECONV PEs are assigned for
CONV layer, the inference time of CONV layer is

TCONV = (R �C �M �N �K2)=(PEConvNet � f) (27)

Hence, the bandwidth demand of the CONV layer is

BWCONV = MACONV =TCONV (28)

Assuming PEFCNet=RNN PEs are assigned for the sparse
FC/RNN layer, the inference time is

TFC = (M �N �SPA)=(PEFCNet=RNN � f) (29)

Hence, the bandwidth demand of the FC layer is

BWFC = MAFC=TFC (30)

At the time of t, CONV layer CONV (t) and fully connected
layer FC(t) are simultaneously accelerated by the PE array. The
transient bandwidth BWt is the sum of the BWCONV (t) and BWFC(t).

To reduce the peak bandwidth in hybrid-NN acceleration, we
formulate the optimization problem as follows:

min THybrid�NN = max(TConvNet ;TFCNet + TRNN) (31)
min maxfBWt j0� t � THybrid�NNg (32)

s.t.

PEConvNet + PEFCNet=RNN � PE (33)
SPMConvNet + SPMFCNet=RNN � SPM (34)

where THybrid�NN is the inference time of the whole hybrid-
NN and TConvNet=TFCNet=TRNN= are inference times for Con-
vNet/FCNet/RNN. They are

TConvNet = å
LConvNet
l=1 TCONV [l] (35)

TFCNet = å
LFCNet
l=1 TFC[l] (36)

TRNN = å
LRNN
l=1 TFC[l] (37)

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Construct scheduling framework

PE array partition

SPM buffer partition

ConvNet tiling parameters
and scheduling

FCNet/ RNN tiling
parameters and scheduling

Compiling workflow: Executing workflow

Optimal configuration

Parana

C
on

tro
lle

r CONV

FC

PE array

Hybrid-NN acceleration on Parana

O
pt

 p
ro

bl
em

FCNet/ RNN tiling and
scheduling model

ConvNet tiling and
scheduling model

SDM partitioning
model

Hybrid-NN
parameters

Parana
configuration Configure PE array

Load configuration

FCNet/ RNN
acceleration

ConvNet
acceleration

FCNet/ RNN
acceleration

ConvNet
acceleration

ConvNet
acceleration

...

Caffe Protext

Figure 10. Compiler workflow and execution workflow.

Because ConvNet and FCNet/RNN are accelerated in parallel,
the inference time of the hybrid-NN is the larger one between
them. In the optimization problem, the first goal is the performance
optimization in Equation 31 which minimizes the inference time
of the whole hybrid-NN. The second goal is to minimize the
maximum bandwidth demands in hybrid-NN acceleration.

This optimization problem needs to be jointly resolved with the
optimization problems of tiling and scheduling for CONV and FC
in Section 5.1. By resolving this optimization problem, we get the
best PE array partitioning and SPM buffer allocation for CONV
layers and FC layers.

5.3 Workflow of Parana
Fig. 10 summaries the workflow for the compiler and execution of
Parana. In compiling workflow, the compiler optimizes the resource
partitioning (e.g. PE array and SPM buffer) and the scheduling
for ConvNet, FCNet, and RNN. It loads the parameters of hybrid-
NN (converted from Caffe protext) and Parana configuration as
input to construct the scheduling framework for the most profitable
resources partition and execution scheduling. The key of scheduling
framework are three models: resources partitioning model for SDM,
tiling and scheduling model for ConvNet, and tiling and scheduling
model for FCNet. The SDM partitioning model is used to guide the
partitioning of computing and memory resources in Parana. With
assigned memory resources, the tiling and scheduling models for
ConvNet, FCNet, and RNN are exploited to maximize usage of
assigned memory and data reuse in each neural network. With the
scheduling framework, the compiler produces the most profitable
configuration for hybrid-NN acceleration on Parana.

In execution workflow, Parana first loads the most profitable
configuration. Then, Parana controller uses the partitioning configu-
ration to configure the partitioning in the PE array and the function
of each PE. The controller also manages the memory assignment of
the SPM buffer with the SPM buffer partitioning configuration. The
scheduling configuration is used to control the dataflow between
NPUs and 3D DRAM.

6 EVALUATION

In this section, we present the experimental setup and the evaluation
results on thermal, performance, and energy improvement.

6.1 Experimental Setup
Benchmarks: We select three representative neural networks, e.g.
AlexNet [1], VGGNet-16 [10], and LRCN [3], as the hybrid-NN

Table 2
Description of the Benchmarks

Hybrid-NNs ConvNet+FCNet+RNN Spa-FCNet Spa-RNN
AlexNet[1] 5+3+- 10.12% -

VggNet-16 [10] 16+3+- 4.63% -
LRCN [3] 5+3+3 10.12% 11.2%

Table 3
Configurations of the simulation

Parana
Frequency 1GHz
PE Array Size 32 � 32
MAC Precision 16-bit Fixed Point
of Banks in SPM Buffer 64
SPM Buffer Size 256KB
Each Cache Buffer Size 1 KB

HBM [64]
Process Technology 29 nm DRAM process
Capacity 8Gb
Chip Size 5.10mm � 6.91mm
of Stack 4 memory dies + 1 logic die
TSV IO 1024
Peak Bandwidth 128 GB/s
Supply Voltages VDD=1.2V, VPP=2.5V

Energy [22] and Thermal Parameters
Activation Energy 3.65 nJ
Read/Write Energy 10.11 nJ
Precharge energy 3.44 nJ
TSV Energy 0.57 nJ
Logic die Energy 18.52 nJ
Ambient Temperature 318.15 (Kelvin)

benchmarks in our evaluation. The three benchmarks represent
various mixes of neural network layers: 1) VGGNet-16 is CONV
computation dominant, 2) LRCN is FC computation dominant, 3)
AlexNet has similar CONV and FC computation. Table 2 lists the
network structures of our benchmarks, along with the sparsities of
FCNet and RNN.
Simulation Framework: We evaluate the temperature of 3D
DRAM in the ”3D + 2.5D” integration system on a simulator, which
integrates a cycle-accurate NPU + HBM simulator, a power model
from CACTI-3DD [22], and a thermal model from HotSpot 6.0
[23]. The configuration of 3D DRAM follows the High-Bandwidth-
Memory (HBM) stacked memory [64]. The DRAM controller
adapts the open-page policy, because of the high row buffers hit
rate. CACTI-3DD is used to generate the detail energy costs of
HBM access. The NPU + HBM simulator takes these energy costs
and other parameters of the accelerator, HBM and hybrid-NN
to produce the power traces for all modules in the 3D DRAM.
HotSpot 6.0 analyzes the temperature with power traces as input.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Table 4
Features of each NPU in comparison

NPUs SDM Sparse U-SPM Scheduling
Neurocube [13] No No No No

EIE [41] No Yes No No
Eyeriss [8] No No Yes R-stationary

TETRIS [14] No No Yes IW, OW, or IO
Parana + TDM No Yes Yes OPT

Parana Yes Yes Yes OPT

Table 3 lists the configuration of the simulation. In the
configuration, Parana works at 1GHz and the size of PE array
is 32 � 32. It is the maximum size which can be supported by
the peak bandwidth of 3D memory [64], when Parana is used
to accelerate memory intensive FCNet and RNN. Each PE uses
16-bit fixed-point arithmetic units. The quantized representation of
input and output include: 1 bit signed bit, 7 bits integer, and 8 bits
fractional parts. The representation of weight includes: 1 bit signed
bit and 15 bits fractional parts. The unified SPM buffer includes 64
banks and each bank provides one 16 bits read/write port. Unless
otherwise specified, the default SPM buffer size is 256KB.
State-of-the-art NPU Baselines: We compare our design with four
state-of-the-art NPUs, including Neurocube [13], EIE [41], Eyeriss
[8], and TETRIS [14], which are representative NPU designs. Table
4 summarizes the features of each NPU. In particular, TETRIS [14]
supports three scheduling schemes, including output bypassing
(IW), input bypassing (OW), and weight bypassing (IO); we select
the one that generates the lowest number of memory accesses.

To make this a fair comparison, we analyze key schemes
adopted by state-of-the-art NPUs and implement each of the
schemes in our simulator. We perform our evaluation with various
schemes under the same chip configuration listed in Table 3.

6.2 Chip Area and Power
We implement our Parana architecture design with the configuration
in Table 3 and synthesize our design in Taiwan Semiconductor
Manufacturing Company (TSMC) 28nm high performance compact
mobile computing (HPC) technology. For a high working frequency,
the function of each PE is implemented with at most six-stage
pipelines, where local memory reading takes two stages, multiplier
takes two stages, adder takes one stage and local memory writing
takes one stage. From the synthesized results, we observe that the
delay of the critical path in PE array is 0.96ns. The delay of the
critical path in 256 KB SPM with 64 banks is 0.85 ns. Therefore, the
highest frequency of Parana is 1GHz. Table 5 breakdown power and
area of Parana with key components under 0:9V working voltage.
The results show that the most power and area are dominated by
the PE array, which takes over 85.5% power and 89.8% area. Our
NPU has a total power of 4.9W. The power is much lower than
the power of the 3D DRAM, which is 13.6W as calculated using
CACTI-3DD [22]).

Table 5
Power and area breakdown of Parana

Components power (mW) area (mm2)
Controller 10.332 245554.9538

SPM buffer 662.592 1544372.4288
Reg cache buffers 9.396 10642.4638

PE array 4037.12 15866265.0882
Total 4719.44 17666834.9346

6.3 Analysis on Temperature, Energy, and Performance
We evaluate Parana against the simulators of Neurocube, Eyeriss,
EIE and TETRIS on all hybrid-NNs listed in Table 2. The required

bandwidth (GB/s) for AlexNet, VGG and LRCN are 26.92 �
119.07, 24.01 � 128.00 and 63.16 � 126.53, respectively. Fig. 11
(a)�(d) respectively show the results on peak temperature, steady
temperature, energy costs and the inference time.

As shown in Fig. 11(a) and 11(b), Parana achieves both lower
peak temperature and lower steady temperature than Neurocube,
Eyeriss, EIE and TETRIS. This is a combined effect of sparsity,
SDM and the unified SPM buffer with most profitable tiling and
configuration. Sparsity and the unified SPM buffer reduce the
number of memory accesses, so that the steady temperature is
lowered. SDM optimizes the memory access behavior, so that
the peak temperature is further reduced. If Parana employs TDM
instead of SDM, the peak temperature would dramatically rise,
because TDM cannot evenly distribute memory access over time.
Compared to TDM, SDM leads to a bit higher steady temperature,
because the granularity of resource partition in SDM cannot be
infinitely fine and that brings a little loss.

For the peak temperature in Fig. 11(a), Neurocube and EIE
both reach the the highest peak temperature, and Eyeriss with the
unified SPM buffer only reduces the temperature by 7:66 �C. Parana
achieves the lowest peak temperature, which is benefited largely
from SDM. This is because that the peak temperature is more
related to the maximum bandwidth. SDM merges ConvNet and
FCNet/RNN works together and efficiently reduces the maximum
bandwidth by 54.16%, 72.5% and 26.4% for AlexNet, VGGNet-16
and LRCN respectively. In the acceleration of FCNet and RNN,
both Neurocube and EIE work with the maximum bandwidth and
the maximum bandwidth leads to the peak temperature. Although
sparsity supporting in EIE can effectively reduce the total consumed
energy as shown in Fig.11(c), EIE still uses the full 3D DRAM
bandwidth to load the data for FCNet/RNN. Since the unified
SPM buffer can exploit the data reuse in hybrid-NN, Eyeriss
with the unified SPM buffer can reduce the maximum bandwidth
and reduce the peak temperature. However, the row stationary
scheduling in Eyeriss cannot exploit the full capacity of SPM
buffer. Parana improves the scheduling with the most profitable
tiling and scheduling for each layer and also reduce the peak
temperature. Table 6 takes VGGNet-16 as an example to show the
most profitable tiling scheduling configurations in Parana.

For the steady temperature in Fig. 11(b), Neurocube achieves
the highest temperature for all evaluated benchmarks. The reduction
of steady temperature in Parana, EIE, and Eyeriss is benefited from
the energy reduction. Different with the peak temperature, results in
Fig.11(b) and Fig. 11(c) show that the trend of steady temperature
follows the trend of the energy consumption. Compared to Eyeriss,
EIE saves more energy by pruning the useless connections in
neural networks. Parana achieves more energy reduction than EIE,
because the unified SPM buffer with the most profitable tiling and
scheduling reduces memory accesses further. Due to our tiling
and scheduling mechanisms, Parana substantially reduces system
energy consumption compared with TETRIS.

Fig.11(d) shows the average inference time per image for
different NPU designs. Because 3D DRAM provides enough
bandwidth for PE computation, Neurocube and Eyeriss complete
each benchmark with the similar time. EIE and Parana achieve the
performance improvement benefited from the sparsity. EIE achieves
a higher performance than Parana, because input neurons are also
sparse in EIE. In ”3D+2.5” integration system, the most energy is
consumed by the intensive memory accesses. For an inference of
hybrid-NN, the energy cost (or memory access) is more related to
the optimization schemes. In contrast, the inference time is largely

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

(a) Peak temperature

45

55

65

75

85

95

105

AlexNet VGG-16 LRCN

S
te

ad
y

Te
m

pe
ra

tu
re

 (
(b) Steady temperature

105

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

AlexNet VGG-16 LRCN

To
ta

l E
ne

rg
y

(J
) Neurocube

Eyeriss

EIE

TETRIS

Microtherm+TDM

Microtherm

(c) Total energy

1

2

4

8

16

32

64

128

256

512

AlexNet VGG-16 LRCN

In
fe

re
nc

e
Ti

m
e

(m
s)

Neurocube

Eyeriss

EIE

TETRIS

Microtherm+TDM

Microtherm

(d) Inference time

1

2

4

8

16

32

64

128

256

512

AlexNet VGG-16 LRCN

In
fe

re
nc

e
Ti

m
e

(m
s)

Neurocube

Eyeriss

EIE

TETRIS

Parana+TDM

Parana

Figure 11. Peak/steady temperature, energy and inference time of Neurocube [13], Eyeriss [8], EIE [41], TETRIS [14], Parana+TDM, and Parana,
evaluated on benchmarks AlexNet[1], VGGNet-16[10] and LRCN[3].

Table 6
The most profitable tiling and scheduling for VGG16.(IR: input reuse, WR: weight reuse, OR: output reuse)

CONV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 FC 17 18 19
Tr 224 224 112 112 56 56 56 56 28 28 28 28 1 1 1 1 Tb 32 32 64
Tc 8 8 8 8 14 14 14 14 28 28 28 28 1 1 1 1 Ti 1 1 1
Tm 64 64 128 128 128 128 128 128 128 128 128 128 76 76 76 76 To 410 410 200
Tn 1 1 1 1 1 1 1 1 1 1 1 1 171 171 171 171 - - - -

OPT-Reuse OR IR OR OR OR OR OR OR OR OR OR OR WR WR WR WR - OR OR OR

affected by the number of PEs.
To evaluate the effect of each individual optimization scheme,

i.e. SDM, sparsity supporting, unified SPM and data-reuse schedul-
ing, we remove arbitrary scheme from Parana and compare
their temperature reduction to Parana. Fig. 12 depicts the results.
The baseline is the steady state temperature reduction achieved
by Parana with all optimizations, which is set to 100% in the
comparison. Benefits losses are used to evaluate each optimization
and the higher benefits losses mean that the better effect of
the removing optimization scheme. The results show that the
scheduling mechanism and the sparsity supporting contribute more
temperature reduction than SDM and the unified SPM buffer.
Removing the scheduling mechanism can bring in the benefits
losses over 50%. Removing SDM does not impact the steady state
temperature, because SDM is designed to reduce peak temperature.

0%

20%

40%

60%

80%

100%

AlexNet VGGNet-16 LRCN

Parana

No-Spa

No-SDM

No-Uni-SPM

No-sched

Benefits losses
(the higher the better) 32%

0%

19%

74%

23%

0%

17%

71%
32%

0%

10%

58%

Figure 12. Benefits losses caused by removing arbitrary scheme in
Parana (the higher the better).

6.4 Peak Temperature under SDM and TDM
Fig. 13 depicts the peak temperature for each layer of the three
benchmarks under temporal-division-mapping and spatial-division-
mapping. The three curves in TDM show that ConvNet works at
a low temperature and FCNet/RNN work at a high temperature.
The ConvNets are computation-intensive (e.g. layers[1 � 5] of
AlexNet and LRCN, layers[1 � 16] of VGGNet-16 in Fig. 13),
hence ConvNet can fully exploit all PEs in Parana with only a small

part of the 3D DRAM bandwidth and the low bandwidth leads
to a low working temperature. FCNet/RNN are memory intensive.
They largely increase the bandwidth demands of Parana and result
in a much higher temperature than ConvNet. In contrast, SDM
partitions the PE array into two parts, which are respectively used
to accelerate ConvNet and FCNet/RNN. Hence, SDM merges the
bandwidth demands of ConvNet and FCNet/RNN into a balanced
one. For SDM, which may parallelly execute more than one layers,
each layer’s peak temperature in Fig. 13 represents the maximal
temperature in this layer’s execution period, and it may include
the contribution of other layers. The curves in SDM demonstrate
that SDM can produce a lower peak temperature than TDM on all
evaluated benchmarks.

6.5 3D Memory Access Analysis on the Most Profitable
Data Reuse Scheduling Scheme

Fig. 14 compares the data-reuse scheduling schemes on three
benchmarks and three classic layers in VGGNet16 (e.g. convo-
lutional layer 1, 4, and 16): layer 1 represents output dominated
layer, layer 4 represents both input and output dominated layer,
layer 16 represents the weight dominated layer. In the comparison,
the tiling parameters are the most profitable configuration. The
results show that the scheduling of no data reuse produces the most
memory accesses and the most profitable scheduling in Parana
always achieves the least memory accesses. For some specific
layers, input reuse (IR), weight reuse (WR) and partial sum of
output reuse (OR) can obtain the least memory accesses as the most
profitable scheduling. But for any hybrid-NN, single reusing pattern
cannot always achieve the least memory access in all layers. For
example, OR is suitable to VGG16-CONV-1 and VGG16-CONV-4,
but it is better to adopt weight reuse in VGG16-CONV-16. Hence
the results demonstrate that the most profitable scheduling for each
layer is better than single reusing pattern for all layers. In ”3D +
2.5D” integration system, a small number of memory accesses is
still beneficial to reduce the temperature in 3D DRAM.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

40

50

60

70

80

90

1 2 3 4 5 6 7 8

P
ea

k
Te

m
p.

 (

(a) AlexNet

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19

P
ea

k
Te

m
p.

 (

(b) VGGNet-16

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11

P
ea

k
Te

m
p.

 (

(c) LRCN

Figure 13. Temperature of each layer in AlexNet, VGGNet and LRCN on
Parana with different mapping strategy (SDM and TDM).

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

AlexNet VGGNet LRCN VGG16-1 VGG16-4VGG16-16

N
or

m
al

iz
ed

 3
D

 D
R

A
M

 A
cc

es
s

NO-R IR OR WR Parana
41.1

Figure 14. The 3D DRAM accesses normalized to Parana. (NO-R: no
reuse, IR: input reuse, WR: weight reuse, OR: output reuse, Parana: the
most profitable reuse scheduling)

6.6 Sensitivity Study

Fig. 15 depicts the sensitivity analysis of steady temperature on
different number of PEs and different size of SPM buffer. The
results on different number of PEs show that the steady temperature
increases quickly with a larger PE array. A larger PE arrays means
more concurrent 3D memory accesses, then the higher temperature
is caused by producing the same energy in a smaller period of
time. The results on different size of SPM buffer show that a large
unified buffer is beneficial to reduce the steady temperature. This is
because a larger unified buffer increases the data reusability, then
reduces the total 3D memory accesses. Fewer memory accesses
produce less energy consumption and finally reduce the temperature.
As the size of SPM buffer increasing, the benefits are becoming
smaller. In the sensitivity analysis, Parana always achieves the
lowest temperature among various NPU designs.

0
20
40
60
80

100
120
140
160
180

8x8 16x16 32x32 64x64 128x128

S
te

ad
y

Te
m

pe
ra

tu
re

 (

(a) The number of PEs

0

20

40

60

80

100

120

64 128 256 512 1024

S
te

ad
y

Te
m

pe
ra

tu
re

 (

(b) The size (KB) of SPM buffer
Figure 15. Sensitivity analysis on the number of PEs and the size of the
unified buffer, evaluated on LRCN.

7 CONCLUSION

This paper proposed a ”3D + 2.5D” integration neural processor
with 3D stacked memory for hybrid-NN acceleration. Three key
optimization methods are used to tackle the thermal problem in 3D
DRAM, including: spatial division mapping, sparsity supporting,
and buffer-oriented tiling/scheduling. Parana exploits sparsity,
unified SPM and tiling/scheduling to reduce 3D DRAM accesses,
which reduce the steady temperature in 3D DRAM. The spatial
division mapping achieves a balanced bandwidth and reduces the
peak temperature by accelerating convolution and sparse fully
connected layers in parallel. The experimental results show that
the proposed neural processor reduces the peak temperature by
up to 54:72 �C and the steady temperature by up to 32:27 �C over
state-of-the-art accelerators with 3D memory.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems (NIPS),
pp. 1097–1105, 2012.

[2] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha,
A. A. Rusu, A. Pritzel, and D. Wierstra, “Pathnet: Evolution
channels gradient descent in super neural networks,” CoRR,
vol. abs/1701.08734, 2017.

[3] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term
recurrent convolutional networks for visual recognition and
description,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2625–2634,
2015.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. B. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” CoRR,
vol. abs/1408.5093, 2014.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[5] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both
weights and connections for efficient neural networks,” CoRR,
vol. abs/1506.02626, 2015.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural network with pruning, trained quan-
tization and huffman coding,” CoRR, vol. abs/1510.00149,
2015.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in ACM Sigplan
Notices, vol. 49, pp. 269–284, ACM, 2014.

[8] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks,” in 2016 IEEE International Solid-
State Circuits Conference (ISSCC), pp. 262–263, IEEE, 2016.

[9] Z. Chen, F. Zhenman, Z. Peipei, P. Peichen, and C. Jason,
“Caffeine: Towards uniformed representation and acceleration
for deep convolutional neural networks,” in International
Conference on Computer Aided Design (ICCAD), IEEE, 2016.

[10] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” CoRR,
vol. abs/1409.1556, 2014.

[11] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar,
L. Jones, and J. Uszkoreit, “One model to learn them all,”
2017.

[12] G. H. Loh, “3d-stacked memory architectures for multi-core
processors,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, (Washing-
ton, DC, USA), pp. 453–464, IEEE Computer Society, 2008.

[13] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic ar-
chitecture with high-density 3d memory,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architec-
ture (ISCA), pp. 380–392, June 2016.

[14] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“Tetris: Scalable and efficient neural network acceleration
with 3d memory,” in The 22nd ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[15] Y. Xie and J. Zhao, “Die-stacking architecture,” in Synthesis
Lectures on Computer Architecture, vol. 2 of ISCA ’08, pp. 1–
127, June 2015.

[16] AMD, “Amd’s next generation gpu and memory architecture
- hot chips,” in Hot Chips, 2015.

[17] NVIDIA, “Pascal gpu architecture.”
http://www.nvidia.com/object/gpu-architecture.html.

[18] Intel, “Knights landing (knl): 2nd generation intel xeon phi
processor,” in Hot Chips, 2015.

[19] Nervana, “Nervana engine, hardware optimized for machine
learning.” https://www.nervanasys.com/technology/engine/.

[20] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware
energy-reliability trade-offs for mapping of throughput-
constrained applications on multimedia mpsocs,” in Con-
ference on Design, Automation and Test in Europe, p. 102,
2014.

[21] I. Thomson, “Meet TPU 3.0: Google teases world with latest
math coprocessor for AI.” https://www.theregister.co.uk/2018/
05/09/google tpu 3/, 2018.

[22] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman,
and N. P. Jouppi, “Cacti-3dd: Architecture-level modeling
for 3d die-stacked dram main memory,” in 2012 Design,

Automation Test in Europe Conference Exhibition (DATE),
pp. 33–38, March 2012.

[23] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0:
Validation, acceleration and extension,” University of Virginia,
Tech. Report CS-2015-04, 2015.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional
neural networks,” in ACM SIGARCH Computer Architecture
News, vol. 38, pp. 247–257, ACM, 2010.

[26] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal,
“Memory-centric accelerator design for convolutional neural
networks,” in 2013 IEEE 31st International Conference on
Computer Design (ICCD), pp. 13–19, IEEE, 2013.

[27] F. Conti and L. Benini, “A ultra-low-energy convolution
engine for fast brain-inspired vision in multicore clusters,” in
Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pp. 683–688, EDA Consortium,
2015.

[28] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, et al., “Dadiannao: A machine-
learning supercomputer,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 609–622, IEEE Computer Society, 2014.

[29] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “Shidiannao: shifting
vision processing closer to the sensor,” in ACM SIGARCH
Computer Architecture News, vol. 43, pp. 92–104, ACM,
2015.

[30] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen,
and T. Chen, “Cambricon: An instruction set architecture
for neural networks,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA),
pp. 393–405, June 2016.

[31] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, “C-
brain: A deep learning accelerator that tames the diversity of
cnns through adaptive data-level parallelization,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, June 2016.

[32] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernandez-Lobato, G. Y. Wei, and D. Brooks,
“Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA),
pp. 267–278, 2016.

[33] S. Park, S. Choi, J. Lee, M. Kim, J. Park, and H. J. Yoo, “14.1
a 126.1mw real-time natural ui/ux processor with embedded
deep-learning core for low-power smart glasses,” in 2016
IEEE International Solid-State Circuits Conference (ISSCC),
pp. 254–255, Jan 2016.

[34] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. S. Modha, “A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm,” in 2011 IEEE
Custom Integrated Circuits Conference (CICC), pp. 1–4, Sept
2011.

[35] J. s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser,
R. K. Montoye, B. Rajendran, J. A. Tierno, L. Chang, D. S.
Modha, and D. J. Friedman, “A 45nm cmos neuromorphic
chip with a scalable architecture for learning in networks of
spiking neurons,” in 2011 IEEE Custom Integrated Circuits

https://www.nervanasys.com/technology/engine/
https://www.theregister.co.uk/2018/05/09/google_tpu_3/
https://www.theregister.co.uk/2018/05/09/google_tpu_3/

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Conference (CICC), pp. 1–4, Sept 2011.
[36] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S.

Kim, “14.6 a 1.42tops/w deep convolutional neural network
recognition processor for intelligent ioe systems,” in 2016
IEEE International Solid-State Circuits Conference (ISSCC),
pp. 264–265, Jan 2016.

[37] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: ineffectual-neuron-free deep
neural network computing,” in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on,
pp. 1–13, IEEE, 2016.

[38] A. Rahman, J. Lee, and K. Choi, “Efficient fpga acceleration
of convolutional neural networks using logical-3d compute
array,” in 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp. 1393–1398, IEEE, 2016.

[39] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Op-
timizing fpga-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
pp. 161–170, ACM, 2015.

[40] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, et al., “Going deeper with embedded fpga
platform for convolutional neural network,” in Proceedings
of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 26–35, ACM, 2016.

[41] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.
Horowitz, and W. J. Dally, “Eie: efficient inference en-
gine on compressed deep neural network,” arXiv preprint
arXiv:1602.01528, 2016.

[42] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An
fpga-based processor for convolutional networks,” in 2009
International Conference on Field Programmable Logic and
Applications, pp. 32–37, IEEE, 2009.

[43] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar,
I. Durdanovic, E. Cosatto, and H. P. Graf, “A massively
parallel coprocessor for convolutional neural networks,” in
2009 20th IEEE International Conference on Application-
specific Systems, Architectures and Processors, pp. 53–60,
July 2009.

[44] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 g-ops/s mobile coprocessor for deep neural networks,”
in 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 696–701, June 2014.

[45] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang,
“A high performance fpga-based accelerator for large-scale
convolutional neural networks,” in 2016 26th International
Conference on Field Programmable Logic and Applications
(FPL), pp. 1–9, Aug 2016.

[46] Y. Shen, M. Ferdman, and P. Milder, “Overcoming re-
source underutilization in spatial cnn accelerators,” in Field
Programmable Logic and Applications (FPL), 2016 26th
International Conference on, pp. 1–4, EPFL, 2016.

[47] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou,
“Dlau: A scalable deep learning accelerator unit on fpga,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2016.

[48] J. Ouyang, “Sda: Software-defined accelerator for large-scale
deep learning system,” in 2016 International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), pp. 1–1, April
2016.

[49] L. He, Y. Luo, and Y. Cao, “Accelerator of stacked con-

volutional independent subspace analysis for deep learning-
based action recognition,” in Field-Programmable Custom
Computing Machines (FCCM), 2014 IEEE 22nd Annual
International Symposium on, pp. 104–104, May 2014.

[50] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst,
“Envision: A 0.26-to-10tops/w subword-parallel dynamic-
voltage-accuracy-frequency-scalable convolutional neural net-
work processor in 28nm fdsoi,” in 2017 IEEE International
Solid-State Circuits Conference (ISSCC), pp. 246–248, IEEE,
2017.

[51] M. L. Campbell, S. T. Toborg, and S. L. Taylor, “3d wafer
stack neurocomputing,” in IEEE International Conference on
Wafer Scale Integration, 1993. Proceedings, pp. 67–74, 1993.

[52] I. T. Wang, Y. C. Lin, Y. F. Wang, C. W. Hsu, and T. H. Hou,
“3d synaptic architecture with ultralow sub-10 fj energy per
spike for neuromorphic computation,” Electron Devices Meet-
ing .iedm.technical Digest.international, vol. 2015, pp. 28.5.1–
28.5.4, 2014.

[53] JEDEC, “JEDEC 3D ICs Interface .” https://www.jedec.org/
category/technology-focus-area/3d-ics, 2016.

[54] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski,
T. Mudge, S. Reinhardt, and K. Flautner, “Picoserver: Using
3d stacking technology to enable a compact energy efficient
chip multiprocessor,” in Proceedings of the 12th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XII, (New York,
NY, USA), pp. 117–128, ACM, 2006.

[55] G. L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood,
and K. Banerjee, “A thermally-aware performance analysis
of vertically integrated (3-d) processor-memory hierarchy,”
in Proceedings of the 43rd Annual Design Automation
Conference, DAC ’06, (New York, NY, USA), pp. 991–996,
ACM, 2006.

[56] G. H. Loh, “3d-stacked memory architectures for multi-core
processors,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, (Washing-
ton, DC, USA), pp. 453–464, IEEE Computer Society, 2008.

[57] W. Computing, “Deep learning computers powered by
dataflow technology.” http://wavecomp.com/technology/.

[58] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-
layer cnn accelerators,” in Proceedings of the 49th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 1–12, IEEE Computer Society, 2016.

[59] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. B. K.
Vrudhula, J. Seo, and Y. Cao, “Throughput-optimized opencl-
based FPGA accelerator for large-scale convolutional neural
networks,” in Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays,
Monterey, CA, USA, February 21-23, 2016, pp. 16–25, 2016.

[60] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in IEEE/ACM International Sympo-
sium on Microarchitecture, pp. 1–12, 2016.

[61] J. Zhao, X. Dong, and Y. Xie, “Cost-aware three-dimensional
(3D) many-core multiprocessor design,” in Proceedings of
the 47th Design Automation Conference (DAC), pp. 126–131,
2010.

[62] JEDEC, DDR3 SDRAM Specification, JESD79-3E, July 2010.
[63] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-

aware intelligent DRAM refresh,” in Proceedings of the 39th
Annual International Symposium on Computer Architecture,

https://www.jedec.org/category/technology-focus-area/3d-ics
https://www.jedec.org/category/technology-focus-area/3d-ics
http://wavecomp.com/technology/

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2018.2858230, IEEE
Transactions on Parallel and Distributed Systems

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

pp. 1–12, 2012.
[64] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim,

Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin,
J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park,
B. Chung, and S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s
high-bandwidth memory (hbm) stacked dram with effective
microbump i/o test methods using 29nm process and tsv,”
in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pp. 432–433, Feb 2014.

Shouyi Yin received the B.S., M.S. and Ph.D.
degrees in Electronic Engineering from Tsinghua
University, China, in 2000, 2002 and 2005, re-
spectively. He has worked in Imperial College
London as a research associate. Currently he
is with Institute of Microelectronics at Tsinghua
University as an associate professor. His re-
search interests include SoC design, reconfig-
urable computing and mobile computing. Prof.
Yin has published more than 40 refereed papers,
and served as TPC member or reviewer for the

international key conferences and leading journals.

Shibin Tang received the B.S. degree in Com-
puter Science and Technology from Shandong
University in 2008, the Ph.D. degree in computer
architecture from Institute of Computing Technol-
ogy, Chinese Academy of Sciences in 2014. He
is currently a postdoctoral researcher in the Insti-
tute of Microelectronics, Tsinghua University. His
research interests include computer architecture,
cache coherence, on chip memory system, deep
learning, and neural network acceleration.

Xinhan Lin received the B.S. degree in Com-
puter Science and Technology from Sichuan Uni-
versity, Chengdu, China, in 2010and the M.S. de-
gree in the Institute of Microelectronics, Tsinghua
University, Beijing, China, in 2016. Currently he is
working toward the Ph.D. degree in the Institute
of Microelectronics, Tsinghua University, Beijing,
China. His research interests include reconfig-
urable computing and optimization of compiler for
reconfigurable computing.

Peng Ouyang received the B.S. degree in elec-
tronic and information technology from center
south university, Changsha, Hunan China, in
2008. And received the PH.D. degree in elec-
tronic science and technology from Tsinghua uni-
versity in 2014. During 2015 2017, he worked as
a post doctor in school of information of Tsinghua
university. Now he is an assistant professor in Bei
Hang University. His research interests include
the computer vision, deep learning and reconfig-
urable computing.

Fengbin Tu received the B.S. degree in elec-
tronic science and technology from Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 2013. He is currently pursuing the
Ph.D. degree with Institute of Microelectronics,
Tsinghua University, Beijing, China. His current
research interests include deep learning, com-
puter architecture, VLSI Design, approximate
computing and reconfigurable computing.

Leibo Liu received the B.S. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 1999 and the Ph.D. degree in Institute
of Microelectronics, Tsinghua University, in 2004.
He now serves as an Associate Professor in
Institute of Microelectronics, Tsinghua University.
His research interests include Reconfigurable
Computing, Mobile Computing and VLSI DSP.

Jishen Zhao Jishen Zhao is an Assistant Profes-
sor in Department of Computer Engineering at
University of California, Santa Cruz. Her research
research spans and stretches the boundary be-
tween computer architecture and system soft-
ware, with a particular emphasis on memory and
storage systems, domain-specific acceleration,
and high-performance computing. Her research
is driven by both emerging device/circuit technolo-
gies (e.g., 3D integration, nonvolatile memories)
and modern applications (e.g., big-data analytics,

machine learning, and scientific computing). Before joining UCSC, she
was a Research Scientist at HP Labs. She received her Ph.D. from
Pennsylvania State University in 2014. She is a member of IEEE and
ACM.

Cong Xu received his B.S. degree in microelec-
tronics from Peking University, Beijing, in 2005,
and his Ph.D. degree in computer science and
engineering from Pennsylvania State University,
University Park, PA, in 2015. He is currently a
research scientist with Hewlett Packard Labs.
His research interests include deep learning
acceleration, high performance computing, and
distributed file system. He has published more
than 30 papers on non-volatile memory and deep
learning acceleration. He is a member of ACM

and IEEE.

Shuangchen Li is a Ph.D student from University
of California, Santa Barbara. He works on mem-
ory related computer architecture, with emphasis
on processing-in-memory architectures, emerg-
ing non-volatile technologies, and deep learning
accelerators.

Yuan Xie is a Professor at UCSB. His research
interests include computer architecture, design
automation, and VLSI. He received Ph.D. from
Princeton University, and has worked for IBM,
AMD, and Penn State, before he joined UCSB in
2014. He is a IEEE Fellow.

Shaojun Wei was born in Beijing, China in 1958.
He received Ph.D. degree from Faulte Polytech-
nique de Mons, Belguim, in 1991. He became
a professor in Institute of Microelectronics of
Tsinghua University in 1995. He is senior member
of Chinese Institute of Electronics. His main
research interests include VLSI SoC design, EDA
methodology, and ASIC design.

